Elevated HLA-A expression impairs HIV control through inhibition of NKG2A-expressing cells

Veron Ramsuran,1,2,3,4* Vivek Naranbhai,1,2,4,5* Amir Horowitz,7 Ying Qi,3 Maureen P. Martin,1 Yuko Yuki,1 Xiaojiao Gao,2 Victoria Walker-Sperling,7 Gregory Q. Del Prete,4 Douglas K. Schneider,8 Jeffrey D. Lifson,9 Jacques Fellay,9 Steven G. Deeks,10 Jeffrey N. Martin,11 James J. Goedert,12 Steven M. Wolinsky,13 Nelson L. Michael,14 Gregory D. Kirk,15 Susan Buchbinder,10,11,16 David Haas,17 Thumi Ndung’u,2,18,19,20 Philip Goulder,18,21 Peter Parham,22 Bruce D. Walker,21,18,23 Jonathan M. Carlson,24 Mary Carrington1,2†

The highly polymorphic human leukocyte antigen (HLA) locus encodes cell surface proteins that are critical for immunity. HLA expression levels vary in an allele-dependent manner, diversifying allele-specific effects beyond peptide-binding preference. Analysis of 9763 HIV-infected individuals from 21 cohorts shows that higher HLA-A levels confer poorer control of HIV. Elevated HLA-A expression provides enhanced levels of an HLA-A-derived signal peptide that specifically binds and determines expression levels of HLA-E, the ligand for the inhibitory NKG2A natural killer (NK) cell receptor. HLA-B haplotypes that favor NKG2A-mediated NK cell licensing (i.e., education) exacerbate the deleterious effect of high HLA-A on HIV control, consistent with NKG2A-mediated inhibition impairing NK cell clearance of HIV-infected targets. Therapeutic blockade of HLA-E:NKG2A interaction may yield benefit in HIV disease.

Unusual within regions of human leukocyte antigen (HLA) class I molecules that determine peptide-binding specificity has a major impact on human disease pathogenesis. Variation in expression levels across alleles of certain HLA genes has also been shown to associate with disease outcome (1–6), emphasizing the importance of HLA polymorphism that determines characteristics other than peptide specificity alone. Elevated expression levels of HLA-A alleles associated with reduced HIV viral load (VL) (7), resulting, in part, from a greater frequency of cytotoxic T lymphocyte (CTL) responses to HLA-C restricted peptides with increasing HLA-C. Like HLA-C, HLA-A alleles vary in expression levels in an allotype-specific manner (7), but these two loci have many distinguishing characteristics. Compared with HLA-C, HLA-A is expressed at a 13- to 18-fold higher level on the cell surface (8) and is about twofold more polymorphic. Mechanisms of transcriptional regulation for these two loci are also distinct under healthy conditions (7, 9, 10). These and other differences may affect how these two loci affect human disease.

We verified that the pattern of allele-specific variation in HLA-A expression levels was not modified by HIV infection by comparing HLA-A expression in 243 HIV-uninfected and 162 HIV-infected ethnicity-matched individuals (fig. S1). Being HIV infected did not associate with a change in the overall level of HLA-A mRNA expression (Effect_unadjusted = 0.00, SE = 0.07, P = 1), nor did HIV status modify expression estimates for any single HLA-A allele (interaction P-value = 0.226 to 0.987 for each of the alleles tested). Therefore, in HIV infection, the gradient in HLA-A expression level attributable to each allele is similar to that in healthy individuals.

To test whether HLA-A expression levels are associated with HIV control, we examined a pooled data set of 2298 HIV-infected (clade C) individuals recruited at 11 sites in sub-Saharan Africa, in which the estimated effect of each HLA allele on HIV VL measured cross-sectionally has been reported (11). The HLA-A expression level of each allele, estimated for black African individuals, was positively correlated with the estimate of effect of that allele on HIV VL (correlation coefficient R = 0.54, P = 0.007, Fig. 1A and Table 1).

Next, we sought to validate the discovery of a deleterious effect of elevated HLA-A expression level in independent cohorts with prospective follow-up and of broader demographic background. We included 62,943 VL measurements obtained longitudinally over a total of 32,804 person years of antiretroviral therapy-free observation time (median 2.86 years per individual) in 5818 individuals enrolled in one of six studies in the USA or one study in Switzerland (see online methods). We modeled HLA-A expression as z-scores (equivalent to one standard deviation change in expression level), using mRNA levels measured in 436 white and black healthy donors (table S1). Consistent with the discovery analysis among sub-Saharan Africans, elevated HLA-A expression levels were significantly associated with higher HIV viremia, even after accounting for the individual allelic effects of HLA-A, -B, and -C. For every one z-score increase in HLA-A expression level, the VL increase over time was 0.06 log10 copies/ml higher (P = 4.4 × 10−18; Table 1). Grouping individuals by estimated HLA-A expression level demonstrates the effect of increasing HLA-A expression on unadjusted HIV VL (Fig. 1B). The association between HLA-A expression level and HIV viremia was independently significant in each ethnicity stratum (Pwhites = 6.1 × 10−15; PAfricans/African-Americans = 1.1 × 10−18, and PHispanic/other = 2.3 × 10−15), notwithstanding distinct HLA-A allele frequencies in each ethnic group. Among 2019 donors enrolled during acute, early HIV infection with known dates of seroconversion, elevated HLA-A expression was similarly associated with higher VL (P = 2.5 × 10−16), confirming that this finding is unlikely to be confounded by frailty bias. HLA-A expression level was associated with a spectrum of alternative HIV outcomes, including elevated mean VL (P = 9.3 × 10−12) and odds of being an HIV noncontroller (HIV VL >10,000 copies/ml) relative to being a controller (HIV VL <2000 copies/ml) (P = 9.2 × 10−13). Furthermore, among 2100 individuals for whom longitudinal CD4+ T cell count measures

1Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA. 2Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA. 3KwaZulu-Natal Research Innovation and Sequencing Platform (KIRISp), School of Laboratory and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa. 4Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa. 5Welcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK. 6Department of Oncological Sciences, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA. 7Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA. 8School of Life Sciences, École Polytechnique Fédérale de Lausanne, and Swiss Institute of Bioinformatics, Lausanne, Switzerland. 9Department of Medicine University of California, San Francisco, CA 94434, USA. 10Department of Epidemiology and Biostatistics, University of California, San Francisco, CA 94413, USA. 11Infections and Immunopathogenesis Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD 20855, USA. 12Division of Infectious Diseases, The Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA. 13U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20901, USA. 14Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA. 15San Francisco Department of Public Health, HIV Research Section, San Francisco, CA 94102, USA. 16Vanderbilt University School of Medicine, Nashville, TN 37232, USA. 17African Health Research Institute, Durban, South Africa. 18HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa. 19Max Planck Institute for Infection Biology, Berlin, Germany. 20Department of Paediatrics, University of Oxford, Oxford, UK. 21Departments of Structural Biology and Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA. 22Institute for Medical and Engineering Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. 23Microsoft Research, Redmond, WA 98052, USA.

*These authors contributed equally to this work.

†Corresponding author. Email: carrington@email.niah.gov

were available, higher HLA-A expression was strongly, and substantially, associated with reduced CD4+ T cell counts (Table 1). The effects of HLA-A expression levels on VL and CD4 count were stable over time (Fig. 1A and B), consistent with a temporally sustained mechanism. Finally, we examined a partially nonoverlapping (39.1% of donors were not included in the VL analyses) collection of five natural-history cohorts, including 1159 antiretroviral-naive individuals followed prospectively after HIV infection. Even in this limited sample, elevated HLA-A expression was associated with accelerated progression to AIDS1987 (P = 0.04) and progression to CD4+ T cell count of <200 cells/μl (P = 0.02), again after adjusting for all individual HLA alleles.

HLA-A expression levels vary across alleles in a continuous manner, indicating multiple polymorphic regulatory sites that together determine the expression level of any given allele. As no single variant controls HLA-A expression levels, genome-wide association studies (GWAS) are not expected to detect such effects. Using formal HLA-A typing results, we inferred expression level for 3057 white, Hispanic, and black individuals included in the International HIV Controllers GWAS (12) (40% of whom were not included in any of the analyses described above). HLA-A expression was significantly associated with HIV elite controller or noncontroller status even after adjusting for population structure (P = 2.7 × 10−5). This observation emphasizes a limitation of GWAS when the combined effects of multiple genetic variants determine a phenotype.

Next, we sought to determine the likely mechanism(s) for the finding that elevated HLA-A expression associates with impaired HIV control. HLA-E serves as a ligand for the strongly inhibitory receptor CD94/NKG2A expressed on both natural killer (NK) cells and T cells. Expression of HLA-E is dependent on stable binding of a signal peptide derived from the leader sequence of HLA-A, -B and -C molecules (residues −22 to −14 relative to the mature protein) (13, 14). Methionine at position 2 of the signal peptide (residue −21) stabilizes and promotes HLA-E expression, and all HLA-A and -C allotypes are fixed for methionine (−21M) or threonine (−21T) at this position (15, 16). Unlike HLA-A, there is minimal variance in HLA-B transcriptional levels across alleles and individuals (17), so HLA-E expression is expected to vary not as a consequence of differences in HLA-B expression levels, but rather as a result of HLA-B−21M/T variation. Accordingly, HLA-B−21M enhances HLA-E expression level in a copy-dependent manner (15). We tested whether HLA-A expression levels may similarly be associated with HLA-E expression levels. Among 58 healthy donors, higher predicted HLA-A expression levels, and therefore higher HLA-A−derived signal peptide, was significantly correlated with higher HLA-E expression levels on the cell surface, independently of the reported effects of HLA-B−21 (Fig. 2A and table S2).

HLA-E has two common allelic variants denoted E*01:01 and E*01:03, reportedly varying in peptide affinities, peptide repertoires, and surface expression levels (18). Although HLA-E*01:03 associates with higher surface expression in univariate analyses, this association was not significant after adjusting for HLA-B−21 and HLA-A genotypes (table S2). As HLA-E*01:03 and HLA-B−21M alleles are in significant linkage disequilibrium (D′ = 0.52), the increased peptide supply attributable to HLA-B−21M and HLA-A expression level likely account for higher expression of HLA-E*01:03, rather than the variant distinguishing HLA-E*01:03 from −*01:01. Accordingly, HLA-E variants did not show independent association with HIV outcomes (table S3). Similarly, addition of HLA-E genotype to a model fitting HLA-A expression and HLA-B−21M (and their interaction) was inferior to a model excluding HLA-E genotype in explaining HIV viremia.

The responsiveness of NK cells varies according to the presence of inhibitory-receptor/HLA pairs because of a process termed NK cell education (19). Accordingly, quantitative variation in HLA expression may influence target cell recognition through both ligand density variation and licensing modulation. The HLA-B−21M/T variant distinguishes between two sets of HLA haplotypes that have differential effects on NK cell education, where −21M marks haplotypes that bias toward NKG2A-mediated education and −21T marks alternative haplotypes that bias toward KIR (killer cell immunoglobulin-like receptor)−mediated education (15). The reported linkage disequilibrium between HLA-B−21M and HLA-B Bw6/HLA-C group1 alleles that interact
Table 1. *HLA-A* expression level is associated with impaired HIV control and is robust to multiple outcome definitions, and subset analyses across 9763 independent individuals of varying geographic and ethnic background. Effect estimates denote the effect of one z-score (i.e. one standard deviation) increase in *HLA-A* expression on the outcome denoted.

<table>
<thead>
<tr>
<th>Study</th>
<th>Outcome measure</th>
<th>Modeling approach</th>
<th>n</th>
<th>Effect estimate per HLA-A z-score increase</th>
<th>95% CI</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cross-sectional discovery studies</td>
<td>Viral load (log_{10} copies/ml)</td>
<td>Spearman correlation of VL effect and expression level for 23 HLA-A alleles</td>
<td>2298 volunteers</td>
<td>Spearman R = 0.54</td>
<td>0.04</td>
<td>0.007</td>
</tr>
<tr>
<td>Prospective validation studies with longitudinal follow-up</td>
<td>Longitudinal viral load (VL)</td>
<td>Mixed effects-linear*</td>
<td>All individuals</td>
<td>62.843 VL in 5,818 volunteers</td>
<td>0.06 log_{10} copies/ml</td>
<td>0.05:0.08</td>
</tr>
<tr>
<td>Controller/ non-controller</td>
<td>Mixed effects-binomial*</td>
<td>2011 controller/2997 noncontroller</td>
<td>OR = 1.30</td>
<td>1.20:1.42</td>
<td>2.5 × 10^{-11}</td>
<td></td>
</tr>
<tr>
<td>CD4+ T cell count (cells/μl)</td>
<td>Mixed effects-linear*</td>
<td>56,415 CD4 counts in 2,100 volunteers</td>
<td>–378 cells/μl</td>
<td>–41.3:34.2</td>
<td>5.9 × 10^{-14}</td>
<td></td>
</tr>
<tr>
<td>Prospective natural history validation studies</td>
<td>Time to AIDS (CDC 1987)</td>
<td>Mixed effects-Cox*</td>
<td>1159 at-risk individuals, 433 events</td>
<td>HR = 1.25</td>
<td>1.01:1.55</td>
<td>0.04</td>
</tr>
<tr>
<td>Time to CD4 <200 cells/μl</td>
<td>Mixed effects-Cox*</td>
<td>1159 at-risk individuals, 537 events</td>
<td>HR = 1.24</td>
<td>1.03:1.49</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>Reanalysis of broad HIV case-control genome-wide association study</td>
<td>Controller/ non-controller</td>
<td>Logistic-regression†</td>
<td>737 controller/2300 noncontroller</td>
<td>OR = 1.29</td>
<td>1.14:1.45</td>
<td>2.7 × 10^{-6}</td>
</tr>
</tbody>
</table>

*HLA-A, -B, and -C alleles, and timing of viral load measurements (for prospective studies) were taken into account by being coded as random effects. †For GWAS analysis, population structure was adjusted for using the top five principal components. ‡NA, not applicable. §OR, odds ratio. ||HR, hazard ratio.

poorly with KIR is evident in our cohort (fig. S2). Using a ligand-independent activation assay designed to measure NK cell licensing, NKG2A+/KIR- NK cells from *HLA-B*–21MM+ donors were more responsive than NKG2A+/KIR+ NK cells from the same donors (P = 0.69, P = 0.03; Fig. 2B). Conversely, KIR’/NKG2A’ NK cells were more strongly licensed in *HLA-B*–21TT donors (P = 1.1 × 10^{-5}), and this was not correlated with *HLA-A* expression. Thus, *HLA-A* haplotypes characterized by both *HLA-B*–21M and high *HLA-A* genotypes, which provide highest levels of HLA-E epitope, strongly bias toward NKG2A-mediated education.

We next tested whether variation in *HLA-A* expression alters NK cell responses toward HIV-infected target cells, and whether this varies according to *HLA-B*–21 genotype. Increasing *HLA-A* expression was significantly correlated with greater inhibition of NK cell degranulation exclusively among *HLA-B*–21MM donors, when target cells were HIV infected and the autologous effector NK cells necessarily expressed NKG2A (R = −0.77, P = 0.016, Fig. 2C). These data extend previous observations (20).

We reasoned that the genetic epidemiological effect of *HLA-A* expression level on impairing HIV control may vary according to *HLA-B*–21 genotype. We examined the two extremes in variation of NK cell education demarcated by *HLA-B*–21 MM versus TT, although education varies across a continuum (21). Haplotypes tagged by *HLA-B*–21M exacerbate the deleterious effect of *HLA-A* expression on HIV viremia (interaction P = 5.3 × 10^{-5}), regardless of ethnicity (Fig. 3). The effect of *HLA-A* expression level on HIV viremia is of greater magnitude in individuals with two *HLA-B* methionine-encoding alleles (VL_{log_{10}} = 0.22, 95% confidence interval (CI) 0.17–0.26 log_{10} copies/ml per one z-score, P = 1.5 × 10^{-22}) than in donors with two threonine-encoding *HLA-B* alleles (VL_{log_{10}} = 0.06, 95% CI 0.04–0.08 log_{10} copies/ml per one z-score, P = 1.8 × 10^{-6}). The independent effect of *HLA-B*–21M varied across Caucasians and Africans/African Americans (fig. S4), perhaps owing to substantial differences in *HLA-A* haplotypes in Africans. In an *HLA-B*–21M individual, decrease in *HLA-A* expression by two z-scores (0.44log_{10} copies/ml lower VL) is comparable in magnitude to the effect of the presence of *HLA-B*–57 (0.41log_{10} copies/ml lower VL in the same data set).
Fig. 2. HLA-A expression and HLA-B−21M regulate HLA-E expression, resulting in biased licensing of NKG2A-expressing NK cells that are impaired in their killing of HIV-infected target cells. (A) HLA-E expression according to HLA-A expression and HLA-B−21M in 58 HIV-uninfected donors. Each dot represents HLA-E expression levels (expressed as median signal intensity on a linear scale), as determined by CyTOF. (B) HLA-A expression (z-score) \(R_{\text{Pearson}} = 0.43, 95\% \text{ CI} (0.20–0.62, P = 5 \times 10^{-5}) \). (C) HLA-B−21M and HLA-B−21T donors were cocultured with autologous T cell blasts that were left uninfected or were infected with HIV, and IFN-γ levels were quantitatively measured in these T cell blasts by flow cytometry.

Taken together, these data support a model of increased HLA-A expression having a deleterious effect on HIV control through enhanced HLA-E expression that results in increased NKG2A-mediated NK cell inhibition and impaired elimination of HIV-infected target cells. HIV is capable of avoiding both T cell and NK cell recognition of infected host cells. HIV Nef-mediated reduction of HLA-A and -B (22) surface expression and Vpu-mediated reduction of HLA-C (23) likely serve to reduce antigen presentation and T cell killing of infected targets. These viral mechanisms occur posttranslationally (22, 23) and should not affect the contribution of HLA class I signal peptides to enhancing HLA-E expression. This in turn may serve to allow continued evasion of NK cell responses through enhanced NKG2A inhibition among those individuals with HLA haplotypes that provide ample signal peptide to bind HLA-E. HIV encodes a peptide (AISPRTLNA, AA9) that may further exploit the inhibitory effects of HLA-E, but discrepancies regarding the effects of this peptide on HLA-E expression, NKG2A binding, and NK cell killing have been reported (24, 25). NKG2A-expressing CD8 T cells are involved in antiviral responses (26), but the functional assays that we used are not appropriate for evaluating CD8+ T cell responses, and thus, we cannot rule out a role for CD8 T cells in the genetic data presented herein. Although NKG2C, an activating receptor that also binds HLA-E (27), may play some role in the pathway that we delineate, signaling through NKG2A dominates and overrides NKG2C signaling (28). These data show that expression level variation participates in the complex patterns of HLA associations in HIV disease, a pattern recognized for class I in other species (29). Blockade of HLA-E/NKG2A-mediated inhibition in vivo is a therapeutic strategy being explored through clinical trials of an antibody against NKG2A (monalizumab) for treatment of rheumatoid arthritis (NCT02331875), cancer (NCT 02557516, NCT02643550, NCT02459301, NCT02671435), and stem-cell transplantation (NCT02921685), because a role for HLA-E-mediated immunosuppression is recognized in these disorders (30, 31). Our data suggest that antagonizing HLA-E/NKG2A
Fig. 3. The effect of HLA-A expression on HIV VL is modified by HLA-B alleles encoding methionine at position –21 in the signal peptide. The magnitude of effect (slope) of HLA-A expression on HIV viral load is stronger among individuals with HLA-B –21 MM (VL from 428 individuals, black line, $V_{\text{effect-MM}}$ = $0.22 \log_{10}$ copies/ml, $P = 1.5 \times 10^{-23}$) adjusted for HLA-A, -B, and -C compared with HLA-B TT (VL from 3071 individuals, red line, $V_{\text{effect-TT}}$ = $0.06 \log_{10}$ copies/ml, $P = 1.8 \times 10^{-24}$ adjusted for HLA-A, -B, and -C). Interaction $P = 5.3 \times 10^{-23}$. Gray shading represents 95% CI of the linear estimate.

HLA-B -21 variant

- T/T
- M/M

Unadjusted HIV VL (log$_{10}$ copies/ml)

HLA-A expression level (z-score)

-2 -1 0 1 2

-3.00
-3.25
-3.50
-3.75
-4.00

ACKNOWLEDGMENTS

We thank the volunteers in the contributing cohorts, their health-care providers, and the investigators involved in data collection. This work was supported by the National Cancer Institute, National Institutes of Health, and the Collaboration for AIDS Vaccine Discovery of the Bill and Melinda Gates Foundation. Additional funding was provided by the Howard Hughes Medical Institute (T.N.), International AIDS Vaccine Initiative, and South Africa National Research Foundation. See the extended acknowledgments in the supplementary materials for full details. Data and code to understand and assess the conclusions of this research are available in the main text, supplementary materials, or upon request of the authors. Genotyping of samples was subject to materials transfer agreements and institutional review board approved protocols, full details of which have been supplied to Science. V.N., V.R., A.H., J.M.C, and M.C designed and planned the study. All authors contributed to the generation, acquisition, analysis, and/or interpretation of data. V.N., V.R., and M.C. drafted the manuscript. All authors critically reviewed the manuscript for important intellectual content and approved the final version of the manuscript. This work is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ This license does not apply to the figures/photos/artwork or other content included in the article that is credited to a third party; obtain authorization from the rights holder before using such material.

SUPPLEMENTARY MATERIALS

www.sciencemag.org/content/359/6371/86/suppl/DC1

Materials and Methods

Table S1 to S3

Figs. S1 to S3

References (22–49)

30 January 2017; resubmitted 16 October 2017

Accepted 4 December 2017

10.1126/science.aan8825
Elevated HLA-A expression impairs HIV control through inhibition of NKG2A-expressing cells

Science 359 (6371), 86-90.
DOI: 10.1126/science.aam8825

Inhibiting natural killer cells in AIDS
The human leukocyte antigen (HLA) gene complex varies enormously among individuals and helps explain individual variation in immunity to infectious diseases. Ramsuran et al. examined data from almost 10,000 HIV infections. Expression of the HLA-A and -B alleles was associated with higher viral load, reduced CD4+ T cell counts, and accelerated progression to AIDS. Higher levels of HLA-A expression increased expression of HLA-E, which blocks a specific receptor (NKG2A) on the immune cells that normally eliminate virus-infected cells. Thus, targeting NKG2A might provide a therapeutic avenue for HIV treatment.

Science, this issue p. 86